

3A, 400V - 1000V Standard Bridge Rectifier

FEATURES

- Ideal for printed circuit board
- Reliable low cost construction utilizing molded plastic technique
- High surge current capability
- UL Recognized File # E-326243
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS

- Switching mode power supply
- Adapters
- Lighting application

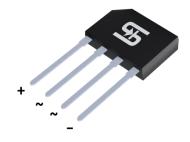
MECHANICAL DATA

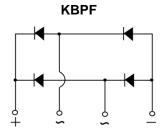
· Case: KBPF

• Molding compound meets UL 94V-0 flammability rating

• Terminal: Matte tin plated leads, solderable per J-STD-002

Polarity: As marked


• Weight: 1.40g (approximately)


KEY PARAMETERS					
PARAMETER	VALUE	UNIT			
I _F	3	Α			
V_{RRM}	400 - 1000	V			
I _{FSM}	80	Α			
T _{J MAX}	150	°C			
Package	KBPF				
Configuration	Quad				

	CYMPOL	KBPF	KBPF	KBPF	KBPF	
PARAMETER	SYMBOL	304G	305G	306G	307G	UNIT
Marking code on the device		KBPF 304G	KBPF 305G	KBPF 306G	KBPF 307G	
Repetitive peak reverse voltage	V_{RRM}	400	600	800	1000	V
Reverse voltage, total rms value	$V_{R(RMS)}$	280	420	560	700	V
Forward current	I _F	3			Α	
Surge peak forward current, 8.3ms single half sine-wave superimposed on rated load	I _{FSM}	80			А	
Rating for fusing (t<8.3ms)	l ² t	26.5			A ² s	
Junction temperature	TJ	- 55 to +150			°C	
Storage temperature	T_{STG}	- 55 to +150			°C	

THERMAL PERFORMANCE						
PARAMETER	SYMBOL	TYP	UNIT			
Junction-to-lead thermal resistance	R _{OJL}	12	°C/W			
Junction-to-ambient thermal resistance	R _{OJA}	59	°C/W			
Junction-to-case thermal resistance	R _{eJC}	13	°C/W			

Thermal Performance Note: Units mounted on PCB (10mm x 10mm Cu pad test board)

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)					
PARAMETER	CONDITIONS	SYMBOL	TYP	MAX	UNIT
Forward voltage per diode ⁽¹⁾	I _F = 1.5A,T _J = 25°C	V	-	1.1	V
	I _F = 1.5A,T _J = 125°C	V _F	-	1.0	V
Reverse current @ rated V _R per diode ⁽²⁾	T _J = 25°C	- I _R	1	5	μA
	T _J = 125°C		ı	50	μA
Junction capacitance per diode	$1MHz, V_R = 4.0V$	CJ	27	-	pF

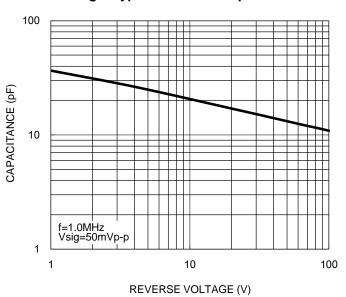
Notes:

- 1. Pulse test with PW = 0.3ms
- 2. Pulse test with PW = 30ms

ORDERING INFORMATION					
ORDERING CODE ⁽¹⁾	PACKAGE	PACKING			
KBPF3xG	KBPF	35 / Tube			

Notes:

1. "x" defines voltage from 400V(KBPF304G) to 1000V(KBPF307G)



CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig.1 Forward Current Derating Curve

Fig.2 Typical Junction Capacitance

Fig.3 Typical Reverse Characteristics

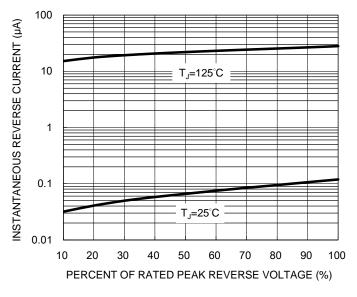
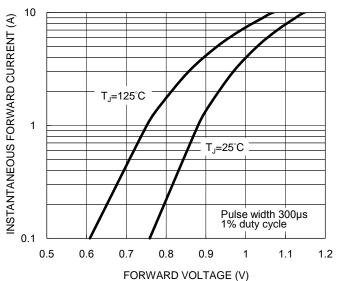
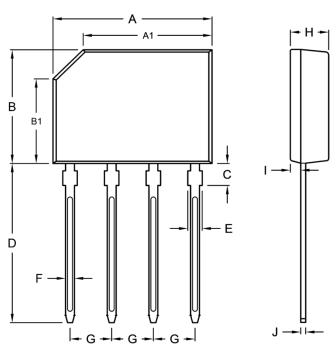



Fig.4 Typical Forward Characteristics



Taiwan Semiconductor

PACKAGE OUTLINE DIMENSIONS

DIM.	Unit (mm)		Unit (inch)		
DIIVI.	Min.	Max.	Min.	Max.	
Α	14.25	14.75	0.561	0.581	
A1	11.45	12.05	0.451	0.474	
В	10.10	10.60	0.398	0.417	
B1	7.40	8.00	0.291	0.315	
С	1.80	2.20	0.071	0.087	
D	14.25	14.73	0.561	0.580	
E	1.22	1.42	0.048	0.056	
F	0.76	0.86	0.030	0.034	
G	3.70	3.90	0.146	0.154	
Н	3.35	3.65	0.132	0.144	
I	0.80	1.10	0.031	0.043	
J	0.35	0.55	0.014	0.022	

MARKING DIAGRAM

P/N = Marking Code

G = Green Compound

YWW = Date Code

F = Factory Code

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.